Characteristics of human CD34+ cells exposed to ionizing radiation under cytokine-free conditions

نویسندگان

  • Junya Ishikawa
  • Naoki Hayashi
  • Masaru Yamaguchi
  • Satoru Monzen
  • Ikuo Kashiwakura
چکیده

To clarify the mechanisms underlying radiation-induced hematopoietic stem cell death, we investigated the effects of excessive ionizing radiation on the clonogenic potential of CD34(+) cells obtained from human umbilical cord blood under cytokine-free conditions. The CD34(+) cells were X-ray-irradiated (up to 2 Gy) and were cultured for 0-48 h under cytokine-free conditions. At various time-points, the CD34(+) cells were investigated for survival, clonogenic potential and the generation of mitochondrial superoxide. At 12 h after X-ray irradiation, the number of viable cells had decreased to ∼70-80% compared with the 0-h non-irradiated control, whereas the clonogenic potential in the X-ray-irradiated cells had decreased to ∼50%-60% compared with the 0-h non-irradiated control. Furthermore, significant generation of mitochondrial superoxide was observed at 6 h, and reached a maximum value between 12 and 24 h after X-ray irradiation. However, no significant differences were observed between non-irradiated and X-ray-irradiated cells in terms of the generation of reactive oxygen species or in the intracellular mitochondrial contents. In addition, a cDNA microarray analysis showed that the majority of the altered genes in the CD34(+) cells at 6 h after X-ray irradiation were apoptosis-related genes. These results suggest the possibility that the elimination of the clonogenic potentials of CD34(+) cells involves the generation of mitochondrial superoxide induced by ionizing radiation.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Reduced DNA damage in tumor spheroids compared to monolayer cultures exposed to ionizing radiation

Background: Several cell lines when cultured under proper condition can form three dimensional structures called multicellular tumor spheroids. Tumor spheroids are valuable in vitro models for studying physical and biological behavior of real tumors. A number of previous studies using a variety of techniques have shown no relationship between radiosensitivity and DNA strand breaks in monolayer ...

متن کامل

Expansion of Non-Enriched Cord Blood Stem/Progenitor Cells CD34+ CD38- Using Liver Cells

Many investigators have used xenogeneic, especially murine stromal cells and fetal calf serum to maintain and expand human stem cells. The proliferation and expansion of human hematopoietic stem cells in ex vivo culture were examined with the goal of generating a suitable protocol for expanding hematopoietic stem cells for patient transplantation. Using primary fetal liver cells, we established...

متن کامل

Proliferation and Differentiation of Human Hematopoietic Stem/Progenitor Cells Exposed to Low-dose X-irradiation

hematopoietic lineages, and are extremely sensitive to oxidative stresses. Exposure of HSPCs to ionizing radiation causes a marked suppression of mature blood cell production in a dosedependent manner. However, little information about the long-term effects of low-dose X-irradiation on the stemness of human HSPCs has been reported. The present study investigated the biological characteristics o...

متن کامل

Mild hypoxia and human bone marrow mesenchymal stem cells synergistically enhance expansion and homing capacity of human cord blood CD34+ stem cells

Objective(s): Cord blood (CB) is known as a valuable source of hematopoietic stem cells (HSC). Identifying strategies that enhance expansion and maintain engraftment and homing capacity of HSCs can improve transplant efficiency. In this study, we examined different culture conditions on ex vivo expansion and homing capacity of CB-HSCs. Materials and Methods: In this study, 4-5 different units o...

متن کامل

Cytokine Status in Ukrainian Children with Irritable Bowel Syndrome Residing in a Radioactive Contaminated Area

Background: The effect of low dose radiation on immune system is shown. Ionizing radiation can affect cytokine production and polarization of T helper cells. Objective: The current study focused on ionizing radiation in Ukrainian children residing in a contaminated area with clinical irritable bowel syndrome. Method: Our study included 75 rural children population aged 4-18 yrs, who lived in a ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 56  شماره 

صفحات  -

تاریخ انتشار 2015